Part Number Hot Search : 
150CT 02228 BR2035 12001 101EF DR210G CS840 HBD678
Product Description
Full Text Search
 

To Download IRFR3711ZTRLPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 12/13/04 irfr3711zpbfirfu3711zpbf hexfet   power mosfet notes   through  are on page 11 applications benefits  very low rds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current  high frequency synchronous buck converters for computer processor power  high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use  lead-free d-pak irfr3711z i-pak irfu3711z 
absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c maximum power dissipation  w p d @t c = 100c maximum power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case CCC 1.9 r ja junction-to-ambient (pcb mount)  CCC 50 c/w r ja junction-to-ambient CCC 110 79 max. 93  66  370 20 20 0.53 39 300 (1.6mm from case) -55 to + 175 v dss r ds(on) max qg 20v 5.7m 18nc downloaded from: http:///

 2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 20 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 13 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 4.5 5.7 m ? CCC 6.2 7.8 v gs(th) gate threshold voltage 1.55 2.0 2.45 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -5.4 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 48 CCC CCC s q g total gate charge CCC 18 27 q gs1 pre-vth gate-to-source charge CCC 5.1 CCC q gs2 post-vth gate-to-source charge CCC 1.8 CCC nc q gd gate-to-drain charge CCC 6.5 CCC q godr gate charge overdrive CCC 4.6 CCC see fig. 16 q sw switch charge (q gs2 + q gd ) CCC 8.3 CCC q oss output charge CCC 9.8 CCC nc t d(on) turn-on delay time CCC 12 CCC t r rise time CCC 13 CCC t d(off) turn-off delay time CCC 15 CCC ns t f fall time CCC 5.2 CCC c iss input capacitance CCC 2160 CCC c oss output capacitance CCC 700 CCC pf c rss reverse transfer capacitance CCC 360 CCC avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s continuous source current CCC CCC 93  (body diode) a i sm pulsed source current CCC CCC 370 (body diode)  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 19 28 ns q rr reverse recovery charge CCC 9.4 14 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) mosfet symbol CCC v gs = 4.5v typ. CCC CCC i d = 12a v gs = 0v v ds = 10v clamped inductive load t j = 25c, i f = 12a, v dd = 10v di/dt = 100a/s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = 10v, i d = 12a v ds = 10v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 12a v ds = 10v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a  v gs = 4.5v, i d = 12a  v gs = 20v v gs = -20v v ds = v gs , i d = 250a v ds = 16v, v gs = 0v v ds = 16v, v gs = 0v, t j = 125c conditions 7.9 max. 140 12 ? = 1.0mhz downloaded from: http:///

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v 0.1 1 10 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 175c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 10v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1 02 03 04 0 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 18v vds= 10v i d = 12a 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1.0 10.0 100.0 1000.0 v ds , drain-tosource voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.805 0.0002370.606 0.001005 0.492 0.101628 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri downloaded from: http:///

 6 www.irf.com d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 7.7a 8.9a bottom 12a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - downloaded from: http:///

 www.irf.com 7 fig 15.       for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///

 8 www.irf.com control fet  

   

      
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///

 www.irf.com 9  

  

  0       
 -  . 12 in the ass embly line "a" as s embled on ww 16, 1999 example: wit h as s e mb l y t his is an irfr120 lot code 1234 year 9 = 199 9 dat e code we e k 16 part number logo international rectifier as s e mb l y lot code 916a irf u120 34 year 9 = 1999 dat e code or p = designat es lead-f ree product (optional) note: "p" in ass embly line position i ndi cates "l ead- f r ee" 12 34 we e k 16 a = as s e mb l y s i t e cod e part number irf u120 line a logo lot code as s e mb l y international rectifier downloaded from: http:///

 10 www.irf.com  
   0       
 -  .  
  assembly example: wi t h as s e mb l y this is an irfu120 year 9 = 199 9 dat e code line a week 19 in the assembly line "a" as s e mble d on ww 19, 1999 lot code 5678 part number 56 irfu120 international logo rectifier lot code 919a 78 note: "p" in ass embly line pos ition indicates "l ead-f r ee"  56 78 as s e mb l y lot code rectifier logo international irfu120 part number we e k 1 9 dat e code year 9 = 1999 a = as s e mb l y s i t e code p = designates lead-free product (optional) downloaded from: http:///

 www.irf.com 11   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 1.9mh, r g = 25 ? , i as = 12a.  pulse width 400s; duty cycle 2%. 
 calculated continuous current based on maximum allowable junction temperature. package limitation current is 30a.  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/04   

    0       
 -  . tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch downloaded from: http:///
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFR3711ZTRLPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X